Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
mBio ; 14(2): e0345222, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2295173

ABSTRACT

Efficient spread of respiratory viruses requires the virus to maintain infectivity in the environment. Environmental stability of viruses can be influenced by many factors, including temperature and humidity. Our study measured the impact of initial droplet volume (50, 5, and 1 µL) and relative humidity (RH; 40%, 65%, and 85%) on the stability of influenza A virus, bacteriophage Phi6 (a common surrogate for enveloped viruses), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) under a limited set of conditions. Our data suggest that the drying time required for the droplets to reach quasi-equilibrium (i.e., a plateau in mass) varied with RH and initial droplet volume. The macroscale physical characteristics of the droplets at quasi-equilibrium varied with RH but not with the initial droplet volume. Virus decay rates differed between the wet phase, while the droplets were still evaporating, and the dry phase. For Phi6, decay was faster in the wet phase than in the dry phase under most conditions. For H1N1pdm09, decay rates between the two phases were distinct and initial droplet volume had an effect on virus viability within 2 h. Importantly, we observed differences in virus decay characteristics by droplet size and virus. In general, influenza virus and SARS-CoV-2 decayed similarly, whereas Phi6 decayed more rapidly under certain conditions. Overall, this study suggests that virus decay in media is related to the extent of droplet evaporation, which is controlled by RH. Importantly, accurate assessment of transmission risk requires the use of physiologically relevant droplet volumes and careful consideration of the use of surrogates. IMPORTANCE During the COVID-19 pandemic, policy decisions were being driven by virus stability experiments with SARS-CoV-2 in different droplet volumes under various humidity conditions. Our study, the first of its kind, provides a model for the decay of multiple enveloped RNA viruses in cell culture medium deposited in 50-, 5-, and 1-µL droplets at 40%, 65%, and 85% RH over time. The results of our study indicate that determination of half-lives for emerging pathogens in large droplets may overestimate transmission risk for contaminated surfaces, as observed during the COVID-19 pandemic. Our study implicates the need for the use of physiologically relevant droplet sizes with use of relevant surrogates in addition to what is already known about the importance of physiologically relevant media for risk assessment of future emerging pathogens.


Subject(s)
COVID-19 , Orthomyxoviridae , Viruses , Humans , SARS-CoV-2 , Pandemics
2.
J Med Virol ; 95(2): e28503, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173247

ABSTRACT

The hepatitis B virus core antigen (HBcAg) tolerates insertion of foreign epitopes and maintains its ability to self-assemble into virus-like particles (VLPs). We constructed a ∆HBcAg-based VLP vaccine expressing three predicted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B and T cell epitopes and determined its immunogenicity and protective efficacy. The recombinant ∆HBcAg-SARS-CoV-2 protein was expressed in Escherichia coli, purified, and shown to form VLPs. K18-hACE2 transgenic C57BL/6 mice were immunized intramuscularly with ∆HBcAg VLP control (n = 15) or ∆HBcAg-SARS-CoV-2 VLP vaccine (n = 15). One week after the 2nd booster and before virus challenge, five ∆HBcAg-SARS-CoV-2 vaccinated mice were euthanized to evaluate epitope-specific immune responses. There is a statistically significant increase in epitope-specific Immunoglobulin G (IgG) response, and statistically higher interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) expression levels in ∆HBcAg-SARS-CoV-2 VLP-vaccinated mice compared to ∆HBcAg VLP controls. While not statistically significant, the ∆HBcAg-SARS-CoV-2 VLP mice had numerically more memory CD8+ T-cells, and 3/5 mice also had numerically higher levels of interferon gamma (IFN-γ) and tumor necrosis factor (TNF). After challenge with SARS-CoV-2, ∆HBcAg-SARS-CoV-2 immunized mice had numerically lower viral RNA loads in the lung, and slightly higher survival, but the differences are not statistically significant. These results indicate that the ∆HBcAg-SARS-CoV-2 VLP vaccine elicits epitope-specific humoral and cell-mediated immune responses but they were insufficient against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Vaccines, Virus-Like Particle , Mice , Animals , Hepatitis B Core Antigens/genetics , Hepatitis B virus/genetics , Epitopes, T-Lymphocyte , SARS-CoV-2 , Mice, Inbred C57BL , Immunity, Cellular , Recombinant Proteins
3.
Journal of Clinical and Translational Science ; 6(s1):74-75, 2022.
Article in English | ProQuest Central | ID: covidwho-1795905

ABSTRACT

OBJECTIVES/GOALS: The SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus-2), which underlies the current COVID-19 pandemic, among other tissues, also targets the central nervous system (CNS). The goal of this study is to investigate mechanisms of neuroinflammation in Lipopolysaccharides (LPS)-treated mouse model and SARS-CoV-2-infected hamsters. METHODS/STUDY POPULATION: In this research I will assay vascular reactivity of cerebral vessels to assess vascular dysfunction within the microcirculation. I will determine expression of proinflammatory cytokines, coagulation factors and AT1 receptors (AT1R) in isolated microvessels from the circle of Willis to assess inflammation, thrombosis and RAS activity in the microvasculature. LPS and SARS-CoV-2, are both associated with coagulopathies and because of that I will measure concentration of PAI-1, von Willebrand Factor, thrombin and D-dimer to assess the thrombotic pathway in the circulation. Histology and immunohistochemistry will assess immune cell type infiltration into the brain parenchyma, microglia activation and severity of neuroinflammation and neural injury. RESULTS/ANTICIPATED RESULTS: We hypothesize that under conditions of reduced ACE2 (e.g., SARS-CoV-2 infection), AT1R activity is upregulated in the microvasculature. In the presence of an inflammatory insult, these AT1Rs promote endothelialitis and immunothrombosis through pro-thrombotic pathways and pro-inflammatory cytokine production leading to endothelial dysfunction in the microvasculature, blood brain barrier (BBB) injury, deficits in cognition and increased anxiety. We will test this hypothesis through 2 aims: Aim 1: Determine the role of the pro-injury arm of the RAS in the pathophysiology of the brain in animal models of neuroinflammation and COVID-19. Aim 1: Determine the role of the protective arm of the RAS in the pathophysiology of the brain in animal models of neuroinflammation and COVID-19. DISCUSSION/SIGNIFICANCE: This study will provide insights that will complement on-going clinical trials on angiotensin type 1 receptor (AT1R) blockers (ARBs) in COVID-19. This research is a necessary first step in understanding mechanisms of brain pathogenesis that can set the groundwork for future studies of more complex models of disease.

4.
mBio ; 12(5): e0252721, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1476394

ABSTRACT

Respiratory viruses such as SARS-CoV-2 are transmitted in respiratory droplets and aerosol particles, which are released during talking, breathing, coughing, and sneezing. Noncontact transmission of SARS-CoV-2 has been demonstrated, suggesting transmission via virus carried through the air. Here, we demonstrate that golden Syrian hamsters produce infectious SARS-CoV-2 in aerosol particles prior to and concurrent with the onset of mild clinical signs of disease. The average emission rate in this study was 25 infectious virions/hour on days 1 and 2 postinoculation, with average viral RNA levels 200-fold higher than infectious virus in aerosol particles. The majority of virus was contained within particles <5 µm in size. Thus, we provide direct evidence that, in hamsters, SARS-CoV-2 is an airborne virus. IMPORTANCE SARS-CoV-2 is a respiratory virus and has been isolated from the air near COVID-19 patients. Here, using a hamster model of infection, we demonstrate that SARS-CoV-2 is emitted in aerosol particles prior to and concurrent with the onset of mild disease. Virus is contained primarily within aerosol particles <5 µm in size, which can remain airborne and be inhaled. These findings indicate that SARS-CoV-2 is an airborne virus and support the use of ventilation to reduce SARS-CoV-2 transmission.


Subject(s)
Aerosols , COVID-19/transmission , SARS-CoV-2/pathogenicity , Animals , COVID-19/metabolism , Chlorocebus aethiops , Cricetinae , Mesocricetus , Real-Time Polymerase Chain Reaction , Vero Cells
5.
Virology ; 563: 98-106, 2021 11.
Article in English | MEDLINE | ID: covidwho-1386714

ABSTRACT

The COVID-19 pandemic has paralyzed the global economy and resulted in millions of deaths globally. People with co-morbidities like obesity, diabetes and hypertension are at an increased risk for severe COVID-19 illness. This is of overwhelming concern because 42% of Americans are obese, 30% are pre-diabetic and 9.4% have clinical diabetes. Here, we investigated the effect of obesity on disease severity following SARS-CoV-2 infection using a well-established mouse model of diet-induced obesity. Diet-induced obese and lean control C57BL/6 N mice, transduced for ACE2 expression using replication-defective adenovirus, were infected with SARS-CoV-2, and monitored for lung pathology, viral titers, and cytokine expression. No significant differences in tissue pathology or viral replication was observed between AdV transduced lean and obese groups, infected with SARS-CoV-2, but certain cytokines were expressed more significantly in infected obese mice compared to the lean ones. Notably, significant weight loss was observed in obese mice treated with the adenovirus vector, independent of SARS-CoV-2 infection, suggesting an obesity-dependent morbidity induced by the vector. These data indicate that the adenovirus-transduced mouse model of SARS-CoV-2 infection, as described here and elsewhere, may be inappropriate for nutrition studies.


Subject(s)
COVID-19/epidemiology , Disease Models, Animal , Obesity/epidemiology , Animals , Chlorocebus aethiops , Comorbidity , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Morbidity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL